294 research outputs found

    Tor-Sch9 deficiency activates catabolism of the ketone body-like acetic acid to promote trehalose accumulation and longevity.

    Get PDF
    n mammals, extended periods of fasting leads to the accumulation of blood ketone bodies including acetoacetate. Here we show that similar to the conversion of leucine to acetoacetate in fasting mammals, starvation conditions induced ketone body-like acetic acid generation from leucine in S. cerevisiae. Whereas wild-type and ras2Δ cells accumulated acetic acid, long-lived tor1Δ and sch9Δ mutants rapidly depleted it through a mitochondrial acetate CoA transferase-dependent mechanism, which was essential for lifespan extension. The sch9Δ-dependent utilization of acetic acid also required coenzyme Q biosynthetic genes and promoted the accumulation of intracellular trehalose. These results indicate that Tor-Sch9 deficiency extends longevity by switching cells to an alternative metabolic mode, in which acetic acid can be utilized for the storage of stress resistance carbon sources. These effects are reminiscent of those described for ketone bodies in fasting mammals and raise the possibility that the lifespan extension caused by Tor-S6K inhibition may also involve analogous metabolic changes in higher eukaryotes

    Increased levels of RNA oxidation enhance the reversion frequency in aging pro-apoptotic yeast mutants

    Get PDF
    Despite recent advances in understanding the complexity of RNA processes, regulation of the metabolism of oxidized cellular RNAs and the mechanisms through which oxidized ribonucleotides affect mRNA translation, and consequently cell viability, are not well characterized. We show here that the level of oxidized RNAs is markedly increased in a yeast decapping Kllsm4Δ1 mutant, which accumulates mRNAs, ages much faster that the wild type strain and undergoes regulated-cell-death. We also found that in Kllsm4Δ1 cells the mutation rate increases during chronological life span indicating that the capacity to han- dle oxidized RNAs in yeast declines with aging. Lowering intracellular ROS levels by antioxidants recovers the wild- type phenotype of mutant cells, including reduced amount of oxidized RNAs and lower mutation rate. Since mRNA oxidation was reported to occur in different neurodegen- erative diseases, decapping-deficient cells may represent a useful tool for deciphering molecular mechanisms of cell response to such conditions, providing new insights into RNA modification-based pathogenesis

    Hematological and Genetic Markers in the Rational Approach to Patients With HCV Sustained Virological Response With or Without Persisting Cryoglobulinemic Vasculitis

    Get PDF
    Background and Aims: Direct-acting antivirals (DAAs) usually lead to improvement/remission of cryoglobulinemic vasculitis (CV), although symptoms may persist/recur after a sustained virological response (SVR). We evaluated hematological and genetic markers in patients with HCV-SVR vasculitis with and without persisting/recurring symptoms to early predict the CV outcome. Approach and Results: Ninety-eight patients with HCV-CV were prospectively enrolled after a DAA-induced SVR: Group A: 52 with complete clinical response; Group B: 46 with symptom maintenance/recurrence. Monoclonal B-cell lymphocytosis, t(14;18) translocation, and abnormal free light chains κ/λ ratios were detected by flow cytometry or nested-PCR or nephelometry in 4% Group A versus 17% Group B (P = 0.04) patients, 17% Group A versus 40% Group B patients (P = 0.02), and 17% Group A versus 47% Group B (P = 0.003) patients, respectively. At least 1 out of 3 clonality markers was altered/positive in 29% of Group A versus 70% of Group B patients (P < 0.0001). When available, pretherapy samples were also tested for t(14;18) translocation (detected in 12/37 [32%] Group A and 21/38 [55%] Group B) and κ/λ ratios (abnormal in 5/35 [14%] Group A and 20/38 [53%] Group B) (P = 0.0006), whereas at least one clonality marker was detected/altered in 16/37 (43%) Group A and 30/38 (79%) Group B (P = 0.002). CV-associated single-nucleotide polymorphisms were tested by real-time PCR. Among them, notch4 rs2071286 T minor allele and TT genotype showed a higher frequency in Group B versus Group A (46% vs. 29%, P = 0.01, and 17% vs. 2%, P = 0.006, respectively). Conclusions: Hematological or genetic analyses could be used to foresee the CV clinical response after DAA therapy and could be valuable to assess a rational flowchart to manage CV during follow-up

    B-cell activating factor (BAFF), BAFF promoter and BAFF receptor allelic variants in hepatitis C virus related Cryoglobulinemic Vasculitis and Non-Hodgkin's Lymphoma

    Get PDF
    Cryoglobulinemic Vasculitis (CV) is an autoimmune/lymphoproliferative disorder associated with HCV infection that in 5%–10% of cases evolves into a B cell Non-Hodgkin's Lymphoma (NHL). B-cell activating factor (BAFF) is a key regulator in B-cell development and survival. Particular genetic variants are responsible for BAFF signaling impairment in autoimmune and neoplastic diseases. We evaluated BAFF and BAFF-receptor (BAFF-R) polymorphisms in order to determine if they predispose to HCV-related CV and NHL. The analysis was performed on 416 HCV-chronically infected patients: 136 HCV without signs/symptoms of lymphoproliferations/autoimmunity (HCV), 166 HCV with CV (HCV-CV) and 114 HCV with NHL (HCV-NHL). Rs9514828 SNP on BAFF promoter, rs61756766 on BAFF-R and rs12428930 on the BAFF gene were evaluated by Real-Time PCR. Concerning rs9514828, the frequency of C/T genotype was significantly higher in HCV-CV than in HCV. The difference in the distribution of the T/T mutant genotype in HCV-CV compared to HCV was significant as well as the distribution of C/T and T/T genotype in HCV-NHL versus HCV. T minor allele was more frequent in HCV-NHL and HCV-CV than in HCV. The distribution of C/T + T/T (for the dominant model of penetrance C/T + T/T vs. C/C) was significantly higher in HCV-CV and HCV-NHL than in HCV. Genotyping of rs61756766 on BAFF-R coding gene, revealed C/T heterozygosis at a frequency of 11% in HCV-NHL versus 3% in HCV. The T minor allele frequency was higher in HCV-NHL than in HCV. No differences emerged by genotyping rs12428930 SNP on BAFF coding gene. Our results reinforce the hypothesis that BAFF/BAFF-R genetic pattern has a role in the pathogenesis of HCV-related lymphoproliferations. BAFF/BAFF-R variants could identify a risk haplotype for HCV related CV and NHL and a BAFF/BAFF-R genetic profile assessment could potentially contribute to tailoring anti-BAFF therapy by identifying patients with BAFF alterations in which the treatment could be more beneficial

    AMPA receptor GluA2 subunit defects are a cause of neurodevelopmental disorders

    Get PDF
    © 2019, The Author(s). AMPA receptors (AMPARs) are tetrameric ligand-gated channels made up of combinations of GluA1-4 subunits encoded by GRIA1-4 genes. GluA2 has an especially important role because, following post-transcriptional editing at the Q607 site, it renders heteromultimeric AMPARs Ca2+-impermeable, with a linear relationship between current and trans-membrane voltage. Here, we report heterozygous de novo GRIA2 mutations in 28 unrelated patients with intellectual disability (ID) and neurodevelopmental abnormalities including autism spectrum disorder (ASD), Rett syndrome-like features, and seizures or developmental epileptic encephalopathy (DEE). In functional expression studies, mutations lead to a decrease in agonist-evoked current mediated by mutant subunits compared to wild-type channels. When GluA2 subunits are co-expressed with GluA1, most GRIA2 mutations cause a decreased current amplitude and some also affect voltage rectification. Our results show that de-novo variants in GRIA2 can cause neurodevelopmental disorders, complementing evidence that other genetic causes of ID, ASD and DEE also disrupt glutamatergic synaptic transmission

    Oncogene homologue Sch9 promotes age-dependent mutations by a superoxide and Rev1/Polζ-dependent mechanism

    Get PDF
    Oncogenes contribute to tumorigenesis by promoting growth and inhibiting apoptosis. Here we examine the function of Sch9, the Saccharomyces cerevisiae homologue of the mammalian Akt and S6 kinase, in DNA damage and genomic instability during aging in nondividing cells. Attenuation of age-dependent increases in base substitutions, small DNA insertions/deletions, and gross chromosomal rearrangements (GCRs) in sch9Δ mutants is associated with increased mitochondrial superoxide dismutase (MnSOD) expression, decreased DNA oxidation, reduced REV1 expression and translesion synthesis, and elevated resistance to oxidative stress-induced mutagenesis. Deletion of REV1, the lack of components of the error-prone Polζ, or the overexpression of SOD1 or SOD2 is sufficient to reduce age-dependent point mutations in SCH9 overexpressors, but REV1 deficiency causes a major increase in GCRs. These results suggest that the proto-oncogene homologue Sch9 promotes the accumulation of superoxide-dependent DNA damage in nondividing cells, which induces error-prone DNA repair that generates point mutations to avoid GCRs and cell death during the first round of replication

    Clinical and molecular consequences of exon 78 deletion in DMD gene

    Get PDF
    We present a 13-year-old patient with persistent increase of serum Creatine Kinase (CK) and myalgia after exertion. Skeletal muscle biopsy showed marked reduction of dystrophin expression leading to genetic analysis of DMD gene by MLPA, which detected a single deletion of exon 78. To the best of our knowledge, DMD exon 78 deletion has never been described in literature and, according to prediction, it should lead to loss of reading frame in the dystrophin gene. To further assess the actual effect of exon 78 deletion, we analysed cDNA from muscle mRNA. This analysis confirmed the absence of 32 bp of exon 78. Exclusion of exon 78 changes the open reading frame of exon 79 and generate a downstream stop codon, producing a dystrophin protein of 3703 amino acids instead of 3685 amino acids. Albeit loss of reading frame usually leads to protein degradation and severe phenotype, in this case, we demonstrated that deletion of DMD exon 78 can be associated with a functional protein able to bind DGC complex and a very mild phenotype. This study adds a novel deletion in DMD gene in human and helps to define the compliance between maintaining/disrupting the reading frame and clinical form of the disease
    corecore